

JA-003-1016001

Seat No.

B. Sc. (Sem. VI) (CBCS) (W.E.F.) Examination August – 2019

Mathematics: Paper - VIII

(Graph Theory & Complex Analysis - II) (New Course)

Faculty Code: 003 Subject Code: 1016001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) Figures on the right side indicate marks.
- 1 (a) Answer the following questions briefly:

4

- (1) Every complete graph is regular graph but converse is not true illustrate with an example.
- (2) Define: Forest and Minimal connected graph.
- (3) What is the the number of pendent vertices in any binary tree with n vertices?
- (4) Prove that $e \le 3n 6$ is only necessary but not sufficient.
- (b) Attempt any one out of two:

2

- (1) Find the number of vertices of 4-regular graph and the number of edges 10 and sketch it.
- (2) (a) Define: Planner graph with an example.
 - (b) Draw the Kuratowski two graph.
- (c) Attempt any one out of two:

3

(1) Let G be a (n, m) graph. $\delta = \min \left\{ d(v_i) / v_i \in V \right\}$ and

$$\Delta = \max \left\{ d(v_i) / v_i \in V \right\}$$
 then prove that $\delta \le \frac{2m}{n} \le \Delta$.

- (2) Prove that the number of edges in tree with n-vertices is (n-1).
- (d) Attempt any one out of two:

5

- (1) Explain Konigsberg bridge problem and the solution give by Euler.
- (2) (a) Define Length of path and prove that every path is open walk but converse is not true.
 - (b) G is tree if and only if there is one path between every pair of vertices. Prove this.

- 2 Answer the following questions briefly: 4 Give an example of 3- chromatic, 2- chromatic, 1- chromatic graph. (2)Define: Acyclic diagraph and give its example. Define: Minimal covering of G. Define: Basis of W_G and w_s . 2 (b) Attempt any one out of two: (1)Define: Path matrix and give its example. (2)Prove that (W_S, \oplus) is commutative group. Attempt any one out of two: 3 (c) Kuratowski's Second graph $K_{3,3}$ has _ **(1)** edges. Fill in the blank. A simple connected graph with 4 vertices can (b) have atmos _____ edges. Fill in the blank. Find the Regions(faces) of a connected planar (c) graph with 4 vertices and 6 edges. (2)Explain dual graph for planner graph and give any two properties of it. (d) Attempt any one out of two: 5 If G is a graph with n-vertices, e- edges, f-faces and K- components, then show that n - e + f = K + 1. (2)Define cut-set vector and in usual notation prove that $(W_s, \oplus, ')$ is a subspace of W_G over field GF_2 $= \{0, 1\}.$ Answer the following questions briefly: 3 4 Find the region of convergence and radius of convergence of the series $\sum_{n=1}^{\infty} \frac{z^n}{2^{n+1}}$.
 - (2) Define: Complex series.
 - (3) Define: Power series.
 - (4) Expand $\frac{1}{1+z}$ in Maclaurian's series.
 - (b) Attempt any one out of two:
 - (1) Expand $e^z z^{-1} (1+z^2)^{-1}$ in Laurentz's series for |z| < 1.
 - (2) Prove that $\frac{1}{z^2} = \frac{1}{4} + \frac{1}{4} \sum_{n=1}^{\infty} (-1)^n (n+1) \left(\frac{z-2}{2}\right)^n$.

(c) Attempt any one out of two:

- an
- (1) State and prove Laurentz's infinity series for an analytic function.
- (2) State and prove necessary and sufficient condition for complex sequence $\{Z_n\}$ to be convergent.
- (d) Attempt any one out of two:

5

3

- (1) In usual notation prove that $\cosh (Z + z^{-1}) = a_0 + \sum_{n=1}^{\infty} a_n (Z^n + Z^{-n}).$
- (2) Sate the Taylor's theorem and expand $\frac{2z^3+1}{z^3+z}$ in Taylor series for $Z_0 = i$.
- 4 (a) Answer the following questions briefly
- 4

- (1) Define: Isolated singular point.
- (2) Define: Zero of complex function.
- (3) Define: Residue of f(z) at pole z_0 .
- (4) Evaluate: $\int_{C} \frac{5z-2}{z(z-1)} dz$, C: |z| = 2.
- (b) Attempt any one out of two:

2

- (1) Define: Pole of complex function.
- (2) Prove that $\int_0^\infty \frac{\cos ax}{x^2 + 1} = \frac{\pi}{2} e^{-4}$.
- (c) Attempt any one out of two:

- 3
- (1) Using residue theorem, find the value of $\int_{-\infty}^{\infty} \frac{dz}{\left(1+x^2\right)^3}$.
- (2) State and prove Cauchy's Residue theorem.
- (d) Attempt any one out of two:

- 5
- (1) Expand $f(z) = \frac{1}{z^2 \sinh z}$ in laurent's series for

 $z_0 = 0$ and hence deduce that

$$\int_{C} \frac{1}{\sinh z} dz = 2\pi i \text{ and } \int_{C} \frac{1}{z^2 \sin h z} dz = -\frac{\pi}{3}i.$$

(2) If Z_0 is the $m^{\rm th}$ order pole of complex function f(z) then prove that

$$\operatorname{Re} s \left(f(z), z_0 \right) = \frac{\phi^{m-1} \left(z_0 \right)}{(m-1)!}, \text{ where } \phi(z) = \left(z - z_0 \right)^m f(z).$$

- 5 (a) Answer the following questions briefly: 4
 - (1) Define: Singular point.
 - (2) If the series $\sum Z_n$ is absolute convergent then $\sum Z_n$ is also convergent.
 - (3) Expand e^z in increasing power of z.
 - (4) Define: Region of Convergence series.
 - (b) Attempt any one out of two:
 - (1) Expand $\frac{1}{(z-1)(z-2)}$ in laurent's series for 1 < |z| < 2.
 - (2) Find $\operatorname{Re} s\left(\frac{e^z}{z(z+1)}, 0\right)$.
 - (c) Attempt any one out of two:
 - (1) Prove that $\int_0^{2\pi} \frac{d\theta}{(2+\cos\theta)^2} = \frac{4\pi}{3\sqrt{3}}.$
 - (2) Prove that $\int_0^\infty \frac{x \sin ax}{x^2 + k^2} dx = \frac{\pi}{2} e^{-ak}$; $a, k \ge 0$.
 - (d) Attempt any one out of two:
 - (1) Prove that $\int_0^{2\pi} \frac{d\theta}{1 + a\cos\theta} = \frac{2\pi}{\sqrt{1 a^2}}; -1 < a < 1.$
 - (2) By Residue theorem find the value of

$$\int_0^{\pi} \frac{d\theta}{(a+\cos\theta)^2} ; a>1.$$

2

3

5